Designing electrical contacts to MoS2 monolayers: a computational study.
نویسندگان
چکیده
Studying the reason why single-layer molybdenum disulfide (MoS2) appears to fall short of its promising potential in flexible nanoelectronics, we find that the nature of contacts plays a more important role than the semiconductor itself. In order to understand the nature of MoS2/metal contacts, we perform ab initio density functional theory calculations for the geometry, bonding, and electronic structure of the contact region. We find that the most common contact metal (Au) is rather inefficient for electron injection into single-layer MoS2 and propose Ti as a representative example of suitable alternative electrode materials.
منابع مشابه
Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors
Among various 2D materials, monolayer transition-metal dichalcogenide (mTMD) semiconductors with intrinsic band gaps (1–2 eV) are considered promising candidates for channel materials in next-generation transistors. Low-resistance metal contacts to mTMDs are crucial because currently they limit mTMD device performances. Hence, a comprehensive understanding of the atomistic nature of metal conta...
متن کاملTailoring the physical properties of molybdenum disulfide monolayers by control of interfacial chemistry.
We demonstrate how substrate interfacial chemistry can be utilized to tailor the physical properties of single-crystalline molybdenum disulfide (MoS2) atomic-layers. Semiconducting, two-dimensional MoS2 possesses unique properties that are promising for future optical and electrical applications for which the ability to tune its physical properties is essential. We use self-assembled monolayers...
متن کاملAtomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials.
With the decrease of the dimensions of electronic devices, the role played by electrical contacts is ever increasing, eventually coming to dominate the overall device volume and total resistance. This is especially problematic for monolayers of semiconducting transition-metal dichalcogenides (TMDs), which are promising candidates for atomically thin electronics. Ideal electrical contacts to the...
متن کاملHigh-performance MoS2 transistors with low-resistance molybdenum contacts
Articles you may be interested in Separation of interlayer resistance in multilayer MoS2 field-effect transistors Appl. Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors Appl. Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition Appl.
متن کاملDesign of Biosensors Based Transition-Metal Dichalcogenide for DNA-base Detection: A First-Principles Density Functional Theory Study
The main function purpose of nanobiosensors is to sense a biologically specific material and the kind of sensing platform and doping engineering has been an emerging topic and plays an important role in monolayer molybdenum disulfide (mMoS2). In this paper, we theoretically reveal the electronic structures of mMoS2 doped by 3d transition metals. Furthermore, adsorption of nucleic acid [Adenine ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 108 15 شماره
صفحات -
تاریخ انتشار 2012